Page of

Cardiac magnetic resonance in the intensive and cardiac care unit 

Cardiac magnetic resonance in the intensive and cardiac care unit
Cardiac magnetic resonance in the intensive and cardiac care unit
The ESC Textbook of Intensive and Acute Cardiovascular Care (2 ed.)

Juerg Schwitter

and Jens Bremerich

Previous versions of this chapter are available. To view earlier versions of this chapter view the full site here.

Current applications of cardiac magnetic resonance offer a wide spectrum of indications in the setting of acute cardiac care. In particular, cardiac magnetic resonance is helpful for the differential diagnosis of chest pain by the detection of ischaemia, myocardial stunning, myocarditis, and pericarditis. Also, Takotsubo cardiomyopathy and acute aortic diseases can be evaluated by cardiac magnetic resonance and are important differential diagnoses in patients with acute chest pain. In patients with restricted windows for echocardiography, according to guidelines, cardiac magnetic resonance is the method of choice to evaluate complications of an acute myocardial infarction. In an acute myocardial infarction, cardiac magnetic resonance allows for a unique characterization of myocardial damage by quantifying necrosis, microvascular obstruction, oedema (i.e. area at risk), and haemorrhage. These features will help us to understand better the pathophysiological events during infarction and will also allow us to assess new treatment strategies in acute myocardial infarction. To which extent the information on tissue damage will guide patient management is not yet clear, and further research, e.g. in the setting of the European Cardiovascular MR registry, is ongoing to address this issue. Recent studies also demonstrated the possiblity to reduce costs in the management of acute coronary syndromes when cardiac magnetic resonance is integrated into the routine work-up. In the near future, applications of cardiac magnetic resonance will continue to expand in the acute cardiac care units, as manufacturers are now strongly focusing on this aspect of user-friendliness. Finally, in the next decade or so, magnetic resonance imaging of other nuclei, such as fluorine and carbon, might become a reality in clinics, which would allow for metabolic and targeted molecular imaging with excellent sensitivity and specificity.

Sign In

Copyright © 2022. All rights reserved.