Show Summary Details
Page of

Nociceptive Processing: Neurochemistry and Neurophysiology 

Nociceptive Processing: Neurochemistry and Neurophysiology
Chapter:
Nociceptive Processing: Neurochemistry and Neurophysiology
Author(s):

Cynthia L. Renn

, and Susan G. Dorsey

DOI:
10.1093/med/9780199768912.003.0003
Page of

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). © Oxford University Press, 2021. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice).

date: 20 April 2021

Chapter 2 describes the molecular events associated with pain signaling. The mechanisms associated with chemical, thermal, and mechanical pain signaling in the peripheral nerve endings are detailed. Molecular signaling mechanisms occurring in the spinal dorsal horn, including the primary afferent nociceptor, the inhibitory interneurons, and the descending on-cells and off-cells projecting from the nucleus raphe magnocellularis are described. Persistent increases in pain signaling resulting from inflammatory mediators are explained with reference to specific molecules. Signaling events at supraspinal levels, such as the thalamus, cortex, periaqueductal gray, and nucleus raphe magnus, including cannabinoids, opioids, and noradrenergic and serotonergic neurotransmitter events, are described as critical to pain pathways with relevance to potential pain therapies.

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.