Show Summary Details
Page of

Motor control: spinal and cortical mechanisms 

Motor control: spinal and cortical mechanisms
Motor control: spinal and cortical mechanisms

David Burke

Page of

PRINTED FROM OXFORD MEDICINE ONLINE ( © Oxford University Press, 2022. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice).

date: 17 May 2022

There is extensive machinery at cerebral and spinal levels to support voluntary movement, but spinal mechanisms are often ignored by clinicians and researchers. For movements of the upper and lower limbs, what the brain commands can be modified or even suppressed completely at spinal level. The corticospinal system is the executive pathway for movement arising largely from primary motor cortex, but movement is not initiated there, and other pathways normally contribute to movement. Greater use of these pathways can allow movement to be restored when the corticospinal system is damaged by, e.g. stroke, but there can be unwanted consequences of this ‘plasticity’. There is an extensive literature on cerebral mechanisms in the control of movement, and an equally large literature on spinal reflex function and the changes that occur during movement, and when pathology results in weakness and/or spasticity.

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.