Show Summary Details
Page of

Blood gas analysis: Acid–base, fluid, and electrolyte disorders 

Blood gas analysis: Acid–base, fluid, and electrolyte disorders
Chapter:
Blood gas analysis: Acid–base, fluid, and electrolyte disorders
Author(s):

Richard Paul

and Paul Grant

DOI:
10.1093/med/9780199687039.003.0018_update_001

Update:

Several minor revisions have been undertaken. The information from the UK consensus guidance on the management of hyponatraemia, the Furst formula and haemofiltration management in hyponatraemia have been introduced.

Added 2 new Figures, 9 new references

Updated on 22 February 2018. The previous version of this content can be found here.
Page of

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). © Oxford University Press, 2016. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice).

date: 17 October 2019

Acid-base homeostasis is vital for the maintenance of normal tissue and organ function, as both acidosis and alkalosis can have harmful and potentially life-threatening effects. Arterial blood gas analysis, combined with routine clinical history and examination, can provide useful information for the management of the critically ill cardiac patient. Most acid-base derangements are reversed by treatment of the underlying disease process, rather than simple correction of the abnormal pH, and prognosis is determined by the nature of the underlying disease, rather than the extent of pH value deviation. Within this chapter, a six-step approach is presented for prompt and accurate acid-base interpretation. Water and electrolyte disorders are common in the intensive cardiac care unit, particularly in patients with cardiac failure. Prompt recognition and treatment is required to prevent cardiovascular and neurological compromise. Therapeutic strategies range from simple electrolyte substitution and fluid management to extracorporeal filtration of excess fluid and electrolytes. These are discussed within this chapter.

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.