- Section I 1800–1899
- Section II 1900–1949
- Section III 1950–1999
- Chapter 23 In praise of famous men: early cortisone studies
- Chapter 24 The relationship between mast cells and histamine
- Chapter 25 What goes round comes around: developing allergen immunotherapy
- Chapter 26 Burnet, clonal selection theory, and acquired immunological tolerance
- Chapter 27 Slow-reacting substance of anaphylaxis
- Chapter 28 Loveless and wasp-venom immunotherapy
- Chapter 29 Developing an understanding of mast cell biology
- Chapter 30 Disodium cromoglycate for allergic asthma
- Chapter 31 Ancient Egyptian soup for treating asthma: Cox and Intal
- Chapter 32 RAST: Iconic test for allergic sensitization
- Chapter 33 The discovery of IgE
- Chapter 34 Penicillin allergy: a model for practical clinical translational science
- Chapter 35 Unravelling the relationship between <i>Dermatophagoides pteronyssinus</i> and asthma
- Chapter 36 The Gell–Coombs classification
- Chapter 37 The dawn of molecular allergology
- Chapter 38 Immunotherapy can change the natural history of respiratory allergy
- Chapter 39 Anatomy of the asthmatic bronchi
- Chapter 40 Identifying a novel cause of occupational allergy
- Chapter 41 Delayed hypersensitivity to pollen allergens
- Chapter 42 Inhaled beclomethasone dipropionate: stepping-up asthma care
- Chapter 43 Challenging notions of the ‘atopic personality’
- Chapter 44 Establishing and investigating the relationship between food allergy and asthma
- Chapter 45 The histamine-inhalational test
- Chapter 46 Allergic reactions to colloid infusions—another chapter in the colloid debate
- Chapter 47 Total and specific IgE and allergic bronchopulmonary aspergillosis
- Chapter 48 Immunotherapy for venom allergy comes of age
- Chapter 49 Extending the evidence for immunotherapy to the management of children with house-dust-mite-triggered asthma
- Chapter 50 Insights from Xhosa children into environmental risk factors for the development of asthma
- Chapter 51 Viral infection, allergic sensitization, and asthma
- Chapter 52 Immune responses in atopic eczema
- Chapter 53 Understanding the relationship between atopic sensitization and airway hyper-responsiveness in asthma
- Chapter 54 Key insights into the relationship between food allergy and atopic dermatitis
- Chapter 55 From slow-reacting substance of anaphylaxis to anti-leukotrienes
- Chapter 56 Once more unto the breach: the role of the damaged bronchial epithelium in asthma
- Chapter 57 Management of anaphylactic shock
- Chapter 58 The hygiene hypothesis
- Chapter 59 In search of the elixir for childhood allergy and asthma prevention
- Chapter 60 A new way of considering ‘quality of life’
- Chapter 61 Food allergy and anaphylaxis
- Chapter 62 Allergen avoidance: the Isle of Wight study
- Chapter 63 Introducing sputum counts
- Chapter 64 Atopic asthma is a TH2-cell-mediated disease
- Chapter 65 Investigating the impact of hay fever on educational performance
- Chapter 66 Findings from an early peanut immunotherapy trial
- Chapter 67 Auto-immune mechanisms in chronic urticaria
- Chapter 68 Air pollution, mortality, and the need for public health policy
- Chapter 69 The geography of asthma and atopy: after the Berlin wall came down
- Chapter 70 The role of animal allergens in allergic disease
- Chapter 71 The natural history of wheezing: the Tucson cohort
- Chapter 72 Measuring food-specific IgE values
- Chapter 73 Tuberculosis exposure and atopy
- Chapter 74 The inner-city home environment and asthma
- Chapter 75 Mapping the burden of allergic disease in childhood: ISAAC
- Chapter 76 The relationship between obesity and asthma
- Chapter 77 The emergence of monoclonal antibodies
- Chapter 78 The renaissance in allergen immunotherapy
- Chapter 79 Pet exposure in early life and the development of allergy and asthma
- Section IV 2000–2012
- Section V Conclusions
(p. 242) The inner-city home environment and asthma
- Chapter:
- (p. 242) The inner-city home environment and asthma
- Author(s):
Friedlander James
and Phipatanakul Wanda
- DOI:
- 10.1093/med/9780199651559.003.0074
Background: It has been hypothesized that asthma-related health problems are most severe among children in inner-city areas who are allergic to a specific allergen and also exposed to high levels of that allergen in bedroom dust.Methods: From November 1992 through October 1993, we recruited 476 children with asthma (age, four to nine years) from eight inner-city areas in the United States. Immediate hypersensitivity to cockroach, house-dust-mite, and cat allergens was measured by skin testing. We then measured major allergens of cockroach (Bla g 1), dust mites (Der p 1 and Der f 1), and cat dander (Fel d 1) in household dust using monoclonal-antibody-based enzyme-linked immunosorbent assays. High levels of exposure were defined according to proposed thresholds for causing disease. Data on morbidity due to asthma were collected at base line and over a one-year period. Results: Of the children, 36.8 percent were allergic to cockroach allergen, 34.9 percent to dust-mite allergen, and 22.7 percent to cat allergen. Among the children’s bedrooms, 50.2 percent had high levels of cockroach allergen in dust, 9.7 percent had high levels of dust-mite allergen, and 12.6 percent had high levels of cat allergen. After we adjusted for sex, score on the Child Behavior Checklist, and family history of asthma, we found that children who were both allergic to cockroach allergen and exposed to high levels of this allergen had 0.37 hospitalization a year, as compared with 0.11 for the other children (P = 0.001), and 2.56 unscheduled medical visits for asthma per year, as compared with 1.43 (P < 0.001). They also had significantly more days of wheezing, missed school days, and nights with lost sleep, and their parents or other care givers were awakened during the night and changed their daytime plans because of the child’s asthma significantly more frequently. Similar patterns were not found for the combination of allergy to dust mites or cat dander and high levels of the allergen. Conclusions: The combination of cockroach allergy and exposure to high levels of this allergen may help explain the frequency of asthma-related health problems in inner-city children.
Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.
Please subscribe or login to access full text content.
If you have purchased a print title that contains an access token, please see the token for information about how to register your code.
For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.
- Section I 1800–1899
- Section II 1900–1949
- Section III 1950–1999
- Chapter 23 In praise of famous men: early cortisone studies
- Chapter 24 The relationship between mast cells and histamine
- Chapter 25 What goes round comes around: developing allergen immunotherapy
- Chapter 26 Burnet, clonal selection theory, and acquired immunological tolerance
- Chapter 27 Slow-reacting substance of anaphylaxis
- Chapter 28 Loveless and wasp-venom immunotherapy
- Chapter 29 Developing an understanding of mast cell biology
- Chapter 30 Disodium cromoglycate for allergic asthma
- Chapter 31 Ancient Egyptian soup for treating asthma: Cox and Intal
- Chapter 32 RAST: Iconic test for allergic sensitization
- Chapter 33 The discovery of IgE
- Chapter 34 Penicillin allergy: a model for practical clinical translational science
- Chapter 35 Unravelling the relationship between <i>Dermatophagoides pteronyssinus</i> and asthma
- Chapter 36 The Gell–Coombs classification
- Chapter 37 The dawn of molecular allergology
- Chapter 38 Immunotherapy can change the natural history of respiratory allergy
- Chapter 39 Anatomy of the asthmatic bronchi
- Chapter 40 Identifying a novel cause of occupational allergy
- Chapter 41 Delayed hypersensitivity to pollen allergens
- Chapter 42 Inhaled beclomethasone dipropionate: stepping-up asthma care
- Chapter 43 Challenging notions of the ‘atopic personality’
- Chapter 44 Establishing and investigating the relationship between food allergy and asthma
- Chapter 45 The histamine-inhalational test
- Chapter 46 Allergic reactions to colloid infusions—another chapter in the colloid debate
- Chapter 47 Total and specific IgE and allergic bronchopulmonary aspergillosis
- Chapter 48 Immunotherapy for venom allergy comes of age
- Chapter 49 Extending the evidence for immunotherapy to the management of children with house-dust-mite-triggered asthma
- Chapter 50 Insights from Xhosa children into environmental risk factors for the development of asthma
- Chapter 51 Viral infection, allergic sensitization, and asthma
- Chapter 52 Immune responses in atopic eczema
- Chapter 53 Understanding the relationship between atopic sensitization and airway hyper-responsiveness in asthma
- Chapter 54 Key insights into the relationship between food allergy and atopic dermatitis
- Chapter 55 From slow-reacting substance of anaphylaxis to anti-leukotrienes
- Chapter 56 Once more unto the breach: the role of the damaged bronchial epithelium in asthma
- Chapter 57 Management of anaphylactic shock
- Chapter 58 The hygiene hypothesis
- Chapter 59 In search of the elixir for childhood allergy and asthma prevention
- Chapter 60 A new way of considering ‘quality of life’
- Chapter 61 Food allergy and anaphylaxis
- Chapter 62 Allergen avoidance: the Isle of Wight study
- Chapter 63 Introducing sputum counts
- Chapter 64 Atopic asthma is a TH2-cell-mediated disease
- Chapter 65 Investigating the impact of hay fever on educational performance
- Chapter 66 Findings from an early peanut immunotherapy trial
- Chapter 67 Auto-immune mechanisms in chronic urticaria
- Chapter 68 Air pollution, mortality, and the need for public health policy
- Chapter 69 The geography of asthma and atopy: after the Berlin wall came down
- Chapter 70 The role of animal allergens in allergic disease
- Chapter 71 The natural history of wheezing: the Tucson cohort
- Chapter 72 Measuring food-specific IgE values
- Chapter 73 Tuberculosis exposure and atopy
- Chapter 74 The inner-city home environment and asthma
- Chapter 75 Mapping the burden of allergic disease in childhood: ISAAC
- Chapter 76 The relationship between obesity and asthma
- Chapter 77 The emergence of monoclonal antibodies
- Chapter 78 The renaissance in allergen immunotherapy
- Chapter 79 Pet exposure in early life and the development of allergy and asthma
- Section IV 2000–2012
- Section V Conclusions