Show Summary Details
Page of

Pressure-controlled mechanical ventilation 

Pressure-controlled mechanical ventilation
Pressure-controlled mechanical ventilation

Thomas Muders

and Christian Putensen

Page of

PRINTED FROM OXFORD MEDICINE ONLINE ( © Oxford University Press, 2020. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice).

date: 26 February 2020

Beside reduction in tidal volume limiting peak airway pressure minimizes the risk for ventilator-associated-lung-injury in patients with acute respiratory distress syndrome. Pressure-controlled, time-cycled ventilation (PCV) enables the physician to keep airway pressures under strict limits by presetting inspiratory and expiratory pressures, and cycle times. PCV results in a square-waved airway pressure and a decelerating inspiratory gas flow holding the alveoli inflated for the preset time. Preset pressures and cycle times, and respiratory system mechanics affect alveolar and intrinsic positive end-expiratory (PEEPi) pressures, tidal volume, total minute, and alveolar ventilation. When compared with flow-controlled, time-cycled (‘volume-controlled’) ventilation, PCV results in reduced peak airway pressures, but higher mean airway. Homogeneity of regional peak alveolar pressure distribution within the lung is improved. However, no consistent data exist, showing PCV to improve patient outcome. During inverse ratio ventilation (IRV) elongation of inspiratory time increases mean airway pressure and enables full lung inflation, whereas shortening expiratory time causes incomplete lung emptying and increased PEEPi. Both mechanisms increase mean alveolar and transpulmonary pressures, and may thereby improve lung recruitment and gas exchange. However, when compared with conventional mechanical ventilation using an increased external PEEP to reach the same magnitude of total PEEP as that produced intrinsically by IRV, IRV has no advantage. Airway pressure release ventilation (APRV) provides a PCV-like squared pressure pattern by time-cycled switches between two continuous positive airway pressure levels, while allowing unrestricted spontaneous breathing in any ventilatory phase. Maintaining spontaneous breathing with APRV is associated with recruitment and improved ventilation of dependent lung areas, improved ventilation-perfusion matching, cardiac output, oxygenation, and oxygen delivery, whereas need for sedation, vasopressors, and inotropic agents and duration of ventilator support decreases.

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.