Show Summary Details
Page of

Macrovascular diseases and diabetes mellitus 

Macrovascular diseases and diabetes mellitus
Page of

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). © Oxford University Press, 2016. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice).

date: 19 June 2019

The virtual epidemic of diabetes that has appeared over the last couple of decades has highlighted the influence of Western lifestyles and obesity on the development of glucose intolerance and associated cardiovascular disease. Two important hypotheses need consideration in contemplating the strong clinical links that exist between diabetes and cardiovascular disease.

The thrifty genotype hypothesis proposed that the development of insulin resistance was an innate biochemical mechanism that acted to conserve energy in times of food shortage as obesity becomes chronic, as in modern life, insulin resistance would lead to the development of type 2 diabetes, thus introducing the concept of exposure as an important pathogenic factor.

The common soil hypothesis argued that diabetes and cardiovascular disease are the same condition underpinned by common genetic and environmental factors.

One of the great advances in understanding in the past 20 years has been the observation that insulin resistance is associated with inflammatory and atherothrombotic risk factor clustering to provide a risk ‘mirror’ for the changes observed in the vulnerable atheromatous plaque. This brings together the thrifty and the common soil hypotheses and indicates that physiological fluctuations in weight and insulin resistance seen in relation to variation in food availability become pathological with chronic exposure leading to both type 2 diabetes and cardiovascular disease. As insulin resistance cycles to type 2 diabetes, hyperglycaemia has further detrimental effects on vascular disease through the generation of reactive oxygen species, glycation of longlasting proteins, and direct effects of glucose. Epidemiological studies demonstrate a marked increase in vascular outcomes as individuals move from euglycaemic insulin resistance to type 2 diabetes to reflect this increased risk. Finally, the development of microvascular renal disease amplifies vascular risk further and the combination of hyperglycaemia and renal disease provides a common pathway for increased cardiovascular risk in both type 1 and type 2 diabetes.

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.