Show Summary Details
Page of

EEG-Based Anticipation and Control of Seizures 

EEG-Based Anticipation and Control of Seizures
EEG-Based Anticipation and Control of Seizures

Stiliyan Kalitzin

, and Fernando Lopes da Silva

Page of

PRINTED FROM OXFORD MEDICINE ONLINE ( © Oxford University Press, 2020. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy and Legal Notice).

date: 01 October 2020

Early seizure-prediction paradigms were based on detecting electroencephalographic (EEG) features, but recent approaches are based on dynamic systems theory. Methods that attempted to detect predictive features during the preictal period proved difficult to validate in practice. Brain systems can display bistability (both normal and epileptic states can coexist), and the transitions between states may be initiated by external or internal dynamic factors. In the former case prediction is impossible, but in the latter case prediction is conceivable, leading to the hypothesis that as seizure onset approaches, the excitability of the underlying neuronal networks tends to increase. This assumption is being explored using not only the ongoing EEG but also active probes, applying appropriate stimuli to brain areas to estimate the excitability of the neuronal populations. Experimental results support this assumption, suggesting that it may be possible to develop paradigms to estimate the risk of an impending transition to an epileptic state.

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.