Page of

Haemoglobinopathies 

Haemoglobinopathies
Chapter:
Haemoglobinopathies
Source:
Oxford Textbook of Rheumatology (4 ed.)
Author(s):

David Rees

DOI:
10.1093/med/9780199642489.003.0172_update_002
Previous versions of this chapter are available. To view earlier versions of this chapter view the full site here.

Inherited abnormalities of the globin genes are the commonest single-gene disorders in the world and fall into two main groups: thalassaemias and sickle cell disease. Thalassaemias are due to quantitative defects in globin chain synthesis which cause variable anaemia and ineffective erythropoiesis. Thalassaemia was initially thought to be a disease of the bones due to uncontrolled bone marrow expansion causing bony distortion, although this is now unusual with appropriate blood transfusions. Osteopenia, often severe, is a feature of most patients with thalassaemia major and intermedia, caused by bone marrow expansion, iron overload, endocrinopathy, and iron chelation. Treatment with bisphosphonates is generally recommended. Other rheumatological manifestations include arthropathy associated with the use of the iron chelator deferiprone. Sickle cell disease involves a group of conditions caused by polymerization of the abnormal -globin chain, resulting in abnormal erythrocytes which cause vaso-occlusion, vasculopathy, and ischaemic tissue damage. The characteristic symptom is acute bone pain caused by vaso-occlusion; typical episodes require treatment with opiate analgesia and resolve spontaneously by 5 days with no lasting bone damage. The frequency of acute episodes varies widely between patients. The incidence of osteomyelitis is increased, particularly with salmonella, although it is much rarer than acute vaso-occlusion. Avascular necrosis can affect the hips, and less commonly the shoulders and knees. Coincidental rheumatological disease sometimes complicates the condition, particularly systemic lupus erythematosus (SLE) which is more prevalent in populations at increased risk of sickle cell disease.

Sign In

Copyright © 2020. All rights reserved.