Show Summary Details
Page of

Cell and molecular biology of human leukaemias 

Cell and molecular biology of human leukaemias

Chapter:
Cell and molecular biology of human leukaemias
Author(s):

Alejandro Gutierrez

and A. Thomas Look

DOI:
10.1093/med/9780199204854.003.220301
Page of

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com). © Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use (for details see Privacy Policy).

date: 23 May 2017

The human leukaemias arise when haematopoietic stem and progenitor cells acquire genetic alterations that lead to malignant transformation, following which affected cells can exhibit differentiation arrest in any lineage and at any stage of maturation.

Genetic alterations leading to leukaemia—a recurring theme is that the genes most frequently altered are those with evolutionarily conserved roles in the embryological development of various cell lineages and organ systems, including (but not limited to) genes that control normal haematopoiesis. The molecular genetic alterations that drive leukaemogenesis can generally be characterized into lesions affecting transcription factors and those that aberrantly activate signal transduction pathways, which often occur via activating mutations in tyrosine kinases....

Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can't find the answer there, please contact us.